The Evaluation of Benign Acute Childhood Myositis by Ultrasound Elastography Ultrasound elastography in myositis

Main Article Content

Gülay Güngör
Olcay Güngör


Objective:   Herein, we aimed to determine the diagnostic contribution of ultrasound elastography (UE) technique to the assessment of muscle stiffness in pediatric patients with myositis.

Material and Methods: This study enrolled 16 patients who presented to our hospital’s Pediatric Neurology Outpatient Clinic with the complaint of inability to walk and who had a clinical presentation of benign acute childhood myositis (BACM). The patients were referred to the Radiology Department to undergo muscle ultrasonography (USG), where they underwent UE of the gastrocnemius muscle (GCM).

Results: Children with myositis and healthy children are similar age (7.06 ± 1.52 year (5–11) vs. 7.00 ± 1.59 year (5–11) year) (P: 0.908) and body mass index (BMI) (20.04 ± 1.58 (18.6–24.2) vs. 22.08 ± 1.43 (19.9–24.4) (P: 0.946). The mean serum creatine kinase (CK) was measured as 1520.3 ± 1163.6 U/L (min: 456,  max:4100) in children with myositis. In the children with myositis, the thickness of the medial and lateral GCM increased compared with that in control group (medial; 18.15 ± 3.02 mm vs 13.10 ± 2.26 mm, p<0.001, lateral; 13.51 ± 3.07 mm vs 9.34 ± 1.86 mm, p<0.001). The medial and lateral GCM ratio in group 1 was slight bigger than that in group 2 (medial; 1.10 ± 0.37 vs 1.00 ± 0.34, p: 0.274, lateral; 1.22 ± 0.44 vs 1.10 ± 0.29, p: 0.243). GCM strain values were mildly elevated in patients with myositis compared to controls.

Conclusion: In the children with myositis, the thickness of the medial and lateral GCM increased compared with that in control group. GCM strain ratio values were slightly higher in myositis patients compared to the control group. We think that the increase in muscle thickness values is mainly secondary to the edema seen in myositis. In addition, UE is a clinically applicable quantitative analysis for changes in myositis.


Download data is not yet available.

Article Details

How to Cite
GüngörG., & GüngörO. (2019). The Evaluation of Benign Acute Childhood Myositis by Ultrasound Elastography . Medical Science and Discovery, 6(9), 205-209.
Research Article


1. Watanabe T., Yoshikawa H., Abe Y., Yamazaki S., Uehara Y., Abe T. Renal involvement in children with Influenza A virus infection. Pediatr Nephrol, 2003; 18(6): 541-544.

2. Lamabadusuriya SP., Witharana N., Preethimala LD. Viral myositis caused by Epstein-Barr virus in children. Ceylon Med J, 2002; 47(1): 38-46.

3. Agyeman P., Duppenthaler A., Heininger U., Aebi C. Influenza-associated myositis in children. Infection, 2004; 32(4): 199-205.
4. Lundberg A. Myalgia cruris epidemica. Acta Paediatr Scand, 1957; 46(1): 18-31.

5. Mackay MT., Kornberg AJ., Shield LK., Dennett X. Benign acute childhood myositis: laboratory and clinical features. Neurology, 1999; 53(9): 2127-2131.

6. Zafeiriou DI., Kataos G., Gombakis N., Kontopoulos EE., Tsantali C. Clinical features, laboratory findings and differential diagnosis of benign acute childhood myositis. Acta Paediatr, 2000; 89(12): 1493-1494.

7. Bove KE., Hilton PK., Partin J., Farrell MK. Morphology of acute myopathy associated with Influenza B infection. Pediatr Pathol, 1983; 1(1): 51-66.

8. Walker UA. Imaging tools for the clinical assessment of idiopathic inflammatory myositis. Curr Opin Rheumatol, 2008 ;20(6): 656-661.
9. Fayad LM., Carrino JA., Fishman EK. Musculoskeletal infection: role of CT in the emergency department. Radiographics, 2007; 27(6): 1723–1736.

10. Kalia V., Leung DG., Sneag DB., Del Grande F., Carrino JA. Advanced MRI Techniques for Muscle Imaging. Semin Musculoskelet Radiol, 2017; 21(4): 459-469.

11. Misu T., Tateyama M., Nakashima I., Shiga Y., Fujihara K., Itoyama Y. Relapsing focal myositis: the localization detected by gallium citrate Ga 67 scintigraphy. Arch Neurol, 2005; 62(12): 1930-1931.

12. Hoffmann A., Buitrago Téllez C., Tolnay M., Tyndall A., Steinbrich W. Focal myositis of the iliopsoas muscle--a benign pseudotumour: ultrasound appearance in correlation with CT and MRI. Ultraschall Med, 2006; 27(2): 180-184.

13. Kawarai T., Nishimura H., Taniguchi K., Saji N., Shimizu H., Tadano M., Shirabe T., Kita Y. Magnetic resonance imaging of biceps femoris muscles in benign acute childhood myositis. Arch Neurol, 2007; 64(8): 1200-1201.

14. Panghaal V., Ortiz-Romero S., Lovinsky S., Levin TL. Benign acute childhood myositis: an unusual cause of calf pain. Pediatr Radiol, 2008; 38(6): 703–705.

15. Maillard SM., Jones R., Owens C., Pilkington C., Woo P., Wedderburn LR., Murray KJ. Quantitative assessment of MRI T2 relaxation time of thigh muscles in juvenile dermatomyositis. Rheumatology, 2004; 43(5): 603–608.

16. Weber MA., Jappe U., Essig M., Krix M., Ittrich C., Huttner HB., Meyding-Lamadé U., Hartmann M., Kauczor HU., Delorme S. Contrast-enhanced ultrasound in dermatomyositis- and polymyositis. J Neurol, 2006; 253(12): 1625-1632.

17. Menzilcioglu MS., Duymus M., Avcu S. Sonographic Elastography of the Thyroid Gland. Pol J Radiol, 2016; 8;81: 152-156.

18. Havre RF., Elde E., Gilja OH., Odegaard S., Eide GE., Matre K., Nesje LB. Freehand real-time elastography: impact of scanning parameters on image quality and in vitro intra- and interobserver validations. Ultrasound Med Biol, 2008; 34(10): 1638-1650.

19. Gungor G., Yurttutan N., Bilal N., Menzilcioglu MS., Duymus M., Avcu S., Citil S. Evaluation of Parotid Glands With Real-time Ultrasound Elastography in Children. J Ultrasound Med, 2016; 35(3): 611-615.

20. Drakonaki EE., Allen GM., Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol, 2012; 85(1019): 1435-1445.

21. Klauser AS., Miyamoto H., Bellmann-Weiler R., Feuchtner GM., Wick MC., Jaschke WR. Sonoelastography: musculoskeletal applications. Radiology, 2014; 272(3): 622-633.

22. Correas JM., Drakonakis E., Isidori AM., Hélénon O., Pozza C., Cantisani V., Di Leo N., Maghella F., Rubini A., Drudi FM., D'ambrosio F. Update on ultrasound elastography: miscellanea. Prostate, testicle, musculo-skeletal. Eur J Radiol, 2013; 82(11): 1904-1912.

23. Gennisson J-L., Deffieux T., Macé E., Montaldo G., Fink M., Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol, 2010; 36(5): 789-801.

24. Berko NS., Fitzgerald EF., Amaral TD., Payares M., Levin TL. Ultrasound elastography in children: establishing the normal range of muscle elasticity. Pediatr Radiol, 2014; 44(2): 158-163.

25. Yanagisawa O., Niitsu M., Kurihara T., Fukubayashi T. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: a feasibility study. Clin Radiol, 2011; 66(9): 815-819.

26. Wenz H., Dieckmann A., Lehmann T., Brandl U., Mentzel HJ. Strain Ultrasound Elastography of Muscles in Healthy Children and Healthy Adults. Rofo, 2019 Apr 29. doi: 10.1055/a-0889-8605.

27. Chino K., Akagi R., Dohi M., Fukashiro S., Takahashi H. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography. PLoS One, 2012; 7(9): e45764.

28. Botar-Jid C., Damian L., Dudea SM., Vasilescu D., Rednic S., Badea R. The contribution of ultrasonography and sonoelastography in assessment of myositis. Med Ultrason, 2010; 12(2): 120-126.

29. Drakonaki EE., Sudoł-Szopińska I., Sinopidis C., Givissis P. High resolution ultrasound for imaging complications of muscle injury: Is there an additional role for elastography? J Ultrason, 2019; 19(77): 137-144.