The Antibiotic Susceptibilities of Methicilline-Resistant Staphylococcus aureus Strains Isolated From Various Clinical Samples

Main Article Content

Erdal Özbek
Hakan Temiz
Nida Özcan
Hasan Akkoc

Abstract

Objective: In this study, it was aimed to determine the in vitro susceptibilities of Methicillin-Resistant Staphylococcus aureus (MRSA) strains to fluoroquinolone, linezolid, tigecycline, and quinupristin/dalfopristin as well as the macrolide-lincosamide-streptogramin B (MLSB) resistance phenotype.


Materials and Methods: A total of 94 MRSA strains isolated from various clinical samples in our hospital laboratory between January 2020 and September 2020 were included. The in-vitro susceptibilities of MRSA strains against fluoroquinolone, linezolid, tigecycline, and quinupristin/dalfopristin were determined by Kirby-Bauer disc diffusion assay according to The European Committee on Antimicrobial Susceptibility Testing (EUCAST).  The E test assay was used for evaluation of tigecycline susceptibility. The D-zone test was performed with erythromycin (15 μg) and clindamycin (2 μg) discs to determine the MLSB resistance. Besides, bacterial identification, antibiotic susceptibility tests including methicillin resistance and MLSB phenotype determination were performed by using VITEK 2 Gram-positive diagnostic kits (Bio-Mérieux/France).


Results: Results: Among 94 MRSA strains included, resistance rates to ciprofloxacin, moxifloxacin, tigecycline, and quinupristin/dalfopristin were found as 71% (67 isolates) 64% (60 isolates), 17% (16 isolates), and 2% (2 isolates), respectively. Resistance was not detected for linezolid. A total of 36 (49%) isolates showed cMLSB resistance phenotype, while 18(19%) had iMLSB resistance. The methicillin susceptibility (MS) phenotype – strains resistant to erythromycin and susceptible to clindamycin- was not detected.


Conclusion: Very little resistance was found to linezolid, quinupristin/dalfopristin and tigecycline. Therefore, these antibiotics may be beneficial for the proper treatment of infections caused by MLSB-resistant isolates.

Downloads

Download data is not yet available.

Article Details

How to Cite
Özbek, E., Temiz, H., Özcan, N., & Akkoc, H. (2021). The Antibiotic Susceptibilities of Methicilline-Resistant Staphylococcus aureus Strains Isolated From Various Clinical Samples. Medical Science and Discovery, 8(4), 266-270. https://doi.org/10.36472/msd.v8i4.531
Section
Research Article

References

1. Padmanabhan RA and Fraser TG. The emergence of methicillin-resistant Staphylococcus aureus in the community. Cleve Clin J Med. 2005; 72:235–241.

2. Kılıc A, Baysallar M, Kucukkaraaslan A, Aydogan H and Dogancı L. In vitro susceptibility of methicillin-resistant Staphylococcus aureus strains to quinupristin/dalfopristine. Turkish Journal of Infection. 2004; 18(4):453-456.

3. Azap A, Ozkan S, Aygun H, Gul S, Yagci D, Memikoglu O, Tekeli E. In Vitro Activity of Moxifloxacin and Ciprofloxacin Against Staphylococcus Aureus Isolates. Turkish Journal of Infection.2005; 19(1):97-100.

4. Arslan U, Yuksekkaya S, Isık F, Tuncer I. In Vitro Susceptibilty of Methicillin-Resistant Staphylococcus aureus Strains to Linezolid and Tigecycline ANKEM Derg.2006; 20(4):210-213.

5. Bouchillon SK, Hoban DJ, Johnson BM, Johnson JL. Hsiung A, Dowzicky MJ. In vitro activity of tigecycline against 3989 Gram-negative and Gram-positive clinical isolates from the United States Tigecycline Evaluation and Surveillance Trial (T.E.S.T. Program; 2004). Diagn Microbiol Infect Dis. 2005; 52:173–179.

6. Betriu C, Rodriguez-Avial I, Sanchez BA, Gómez M, Álvarez J, Picazzo JJ, Spanish Group of Tigecycline. In vitro activities of tigecycline (GAR-936) against recently isolated clinical bacteria in Spain, Antimicrob Agents Chemother. 2002; 46(3):892-895.

7. Milatovic D, Schmitz FJ, Verhoef J, Fluit AC. Activities of the glycylcycline tigecycline (GAR-936) against 1,924 recent European clinical bacterial isolates, Antimicrob Agents Chemother. 2003; 47(1):400-404.

8. Petersen PJ, Jacobus NV, Weiss WJ, Sum PE, Testa RT. In vitro and in vivo antibacterial activities of novel glycylcycline, the 9-t-butylglycylamido derivate of minocycline (GAR-936), Antimicrob Agents Chemother 1999; 43(4):738-744.

9. Moellering Jr. RC. Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med., 138(2):135-142.

10. Marchese A, Schito GC (2001). The oxazolidinones as a new family of antimicrobial agent. Clinical Microbiology and Infection., 7(4): 66-74

11. Allen GP, Cha R, Rybak MJ (2002). In vitro activities of quinupristin-dalfopristin and cefepime, alone and in combination with various antimicrobials, against multidrug-resistant staphylococci and enterococci in an in vitro pharmacodynamic model. Antimicrob Agents Chemother., 46: 2606-2612.

12. Fekefy R In: Mandell GL, Bennett JE, Dolin R. Mandell (2000). Douglas and Bennett’s Principles and Practice of Infectious Diseases. 5th ed. Vancomycin, teicoplanin, and streptogramins: Quinupristin and dalfopristin. Philadelphia: Churchill Livingstone., 382-391.

13. Kim H., Lee B, Jang HC, Kim SH, Kang CI, Choi YJ, Park SW, Kim BS, Kim EC, Oh MD, Choe KW (2004). A high frequency of macrolide-lincosamide-streptogramin resistance determinants in Staphylococcus aureus isolated in South Korea. Microbiol Drug Resist. 10: 248-254.

14. Al FD, Akca G, Aykan B, Sipahi AB, Caglar K (2008). The Susceptibility to Quinupristin/Dalfopristin And Linesolid And Resistance To Macrolide-Lincosamide-Streptogramin B In Methicilline Resistant Staphylococcus Aureus Strains. Turkish Journal of Infection., 22 (3): 153-163.

15. European Committee on Antimicrobial Susceptibility Testing (2020). Breakpoint tables for interpretation of MICs and zone diameters, version 10. https://eucast.org/clinical_breakpoints/

16. Bozdogan B, Esel D, Whitener C, Browne FA, Appelbaum PC (2003). Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hershey Medical Center. J Antimicrob Chemother 52, 864–868.

17. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, Shah S, Rudrik JT, Pupp GR, Brown WJ, Cardo D, Fridkin SK, Vancomycin-Resistant Staphylococcus aureus Investigative Team (2003). Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med. 2003; 348, 1342–1347.

18. Dundar D, Sonmez TG. Antimicrobial susceptibilities of staphylococcus aureus strains isolated from clinical samples: Three years evaluation. ANKEM Derg. 2009; 23(1):8-12.

19. Tsiodras S, Gold HS, Sakoulas G, Wennersten C, Venkataraman L, Moellering RC, Ferraro MJ. Linezolid resistance in a clinical isolate of Staphylococcus aureus., Lancet. 2001; 358(9277):207-208.

20. Anderegg TR, Sader HS, Fritsche TR, Ross JE, Jones RN. Trends in linezolid susceptibility patterns: report from the 2002-2003 worldwide Zyvox Annual Appraisal of Potency and Spectrum (ZAAPS) Program. Int J Antimicrob Agents. 2005; 26(1):13-21.
21. Mutnick AH, Enne V, Jones RN (2003). Linezolid resistance since 2001: SENTRY Antimicrobial Surveillance Program. Ann Pharmacother. 2003; 37(6):769-774.

22. Styers D, Sheehan DJ, Hogan P, Sahm DF. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann Clin Microbiol Antimicrob. 2006; 5:2.

23. Dizbay M, Sipahi AB, O. Kirca GF, Sanal L, Caglar K. Investigation of Glycopeptid and Linezolid Resistance among Methicillin-Resistant Staphylococcus aureus Isolates. ANKEM Derg. 2007; 21(1):23-26.

24. Perry CM, Jarvis B. Perry, C.M., Jarvis, B. Linezolid “A Review of its Use in the Management of Serious Gram-Positive Infections”. Drugs 2012; 61, 525–551 https://doi.org/10.2165/00003495-200161040-00008

25. Yoo IY, Kang OK, Shim HJ, Huh HJ, Lee NY. Linezolid Resistance in Methicillin-Resistant Staphylococcus aureus in Korea: High Rate of False Resistance to Linezolid by the VITEK 2 System. Ann Lab Med. 2020; 40(1): 57–62.

26. Goff D, Dowzicky MJ. Prevalence and regional variation in meticillin resistant Staphylococcus aureus (MRSA) in the USA and comparative in vitro activity of tigecycline, a glycylcycline antimicrobial. Journal of Medical Microbiology., 56, 1189–1195.

27. Behera B, Das A, Mathur P, Kapil A, Gadepalli R, Dhawan B (2009). Tigecycline susceptibility report from an Indian tertiary care hospital. Indian J Med Res., 129(4):446-450.

28. Che Hamzah AM, Yeo CC, Puah SM, Chua KH, A.Rahman NI, Abdullah FH, Othman N, Chew C (2019). Tigecycline and inducible clindamycin resistance in clinical isolates of methicillin-resistant Staphylococcus aureus from Terengganu, Malaysia. Journal of Medical Microbiology., 68:1299–1305

29. Kaya O, Akcam FZ, Temel EN (2008) In vitro activities of linezolid and tigecycline against methicillin-resistant Staphylococcus aureus strains. Microb Drug Resist., 14(2):151-153.

30. Hoban DJ, Bouchillon SK, BM Johnson, Johnson JL, Dowzicky MJ (2005). In vitro activity of tigecycline against 6792 Gram-negative and Gram-positive clinical isolates from the global Tigecycline Evaluation and Surveillance Trial (T.E.S.T. Program, 2004). Diagn Microbiol Infect Dis., 52, 215–227.

31. Shariati A, Dadashi M, Chegini Z, vanBelkum A, Mirzaii M, Khoramrooz SS Darban-Sarokhalil D (2020). The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase–negative staphylococci strains: a systematic review and metaanalysis. Antimicrobial Resistance and Infection Control., 9:56

32. Luh KT, Hsueh PR, Teng LJ, Pan HJ, Chen YC, Lu JJ, Ho SW (2000). Quinupristin-dalfopristin resistance among gram positive bacteria in Taiwan. Antimicrob Agents Chemother 44: 3374-3380.

33. Millan L, Cerda P, Rubio MC, Goñi P, Canales M, Capilla S, Oca M, Gómez-Lus R (2004). In vitro activity of telithromycine, quinupristin/dalfopristin, linezolid and comparator antimicrobial agents againts Staphylococcus aureus clinical isolates. J Chemother. 2007; 16: 230-237.

34. Baddour MM, Abuelkeir MM, Fatani AJ. Trends in antibiotic susceptibility patterns and epidemiology of MRSA isolates from several hospitals in Riyadh, Saudi Arabia. Ann Clin Microbiol Antimicrob. 2006; 5: 30.

35. Baysallar M, Kilic A, Aydogan H, Cilli F Doganci L. Linezolid and quinupristin/dalfopristin resistance in vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus prior to clinical use in Turkey. Int J Antimicrob Agents., 2004; 23: 510-512.

36. Yavuz MT, Behcet M, Ozturk CE, Ozaydın C, and Kaya D. Staphylococcus aureus suşlarının kuinuprisin/dalfopristin’e duyarlılıkları. Türk Mikrobiyol Cem Derg. 2006; 36: 190-194.

37. Tunger A, Aydemir S, Uluer S, Cilli F. In vitro activity of linezolid & quinupristin/dalfopristin against Gram-positive cocci. Indian J Med Res. 2004; 120: 546-552.

38. Azap A, Yuksel O, Ozkan S, Aygun H, Bozkurt YG, Memikoglu O, Tekeli E. Investigation of inducible clindamycin resistance in Staphylococcus aureus strains. Turkish Journal of Infection. 2005; 19:335-338.

39. Otsuka T, Zaraket H, Takano T, Saito K, Dohmae S, Higuchi W, Yamamoto T. Macrolide-lincosamide-streptogramin B resistance phenotypes and genotypes among Staphylococcus aureus clinical isolates in Japan. Clin Microbiol Infect. 2007; 13: 325-327.

40. Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH. Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol., 2003; 41: 4740-4744