Assessing Metastasis through Positron Emission Tomography (PET): An In-depth Analysis and Mapping of Thematic Clusters and Prevailing Topics in Nuclear Medicine Research Mapping Metastasis: A PET Analysis in Nuclear Medicine Research

Main Article Content

Hamdi Afşin

Abstract

Objective: The primary objective of the study is to conduct a critical evaluation of thematic categories within the field of nuclear medicine literature, specifically focusing on positron emission tomography (PET) imaging techniques and the detection and evaluation of metastasis, through the application of bibliometric analysis methods.


Method: Co-citation, co-occurrence and co-authorship analyses were performed on 588 academic publications selected using the Web of Science database. The analyses were performed using R-based Bibliometrix software, Python and Microsoft Excel.


Results: The findings derived from the co-citation and co-occurrence network analyses shed light on the intricate nature of thematic categories within the nuclear medicine literature and provide insights into the core topics. Topics such as metastasis and tumor staging, optimisation of imaging methodology, and standardisation of clinical practice are prominent topics in the study. In particular, a single-authored article has been observed to make a significant contribution to knowledge on the efficacy of different radioactive markers used in the diagnosis of neuroendocrine tumors.


Conclusion: This bibliometric assessment addresses the multidisciplinary and thematic dimensions of an in-depth understanding of the field of nuclear medicine. The study effectively identified four main thematic clusters 'PET and Cancer Types', 'FDG-PET ', 'Prostate Cancer and Recurrence', and 'Cancer Management and Imaging' and highlights the interrelatedness and importance of these categories.

Downloads

Download data is not yet available.

Article Details

How to Cite
Afşin, H. (2023). Assessing Metastasis through Positron Emission Tomography (PET): An In-depth Analysis and Mapping of Thematic Clusters and Prevailing Topics in Nuclear Medicine Research: Mapping Metastasis: A PET Analysis in Nuclear Medicine Research. Medical Science and Discovery, 10(10), 803–817. https://doi.org/10.36472/msd.v10i10.1061
Section
Research Article
Received 2023-10-07
Accepted 2023-10-09
Published 2023-10-11

References

Adams, S., Baum, R. P., Stuckensen, T., Bitter, K., & Hör, G. (1998). Prospective comparison of 18 F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. European journal of nuclear medicine, 25, 1255-1260. DOI: https://doi.org/10.1007/s002590050293

Ahmed, A. A., Misiak, R., Bartyzel, M., Mietelski, J. W., & Wąs, B. (2023). Study of (p, x) reactions in the natCaO targets. Radiation Physics and Chemistry, 207, 110821. DOI: https://doi.org/10.1016/j.radphyschem.2023.110821

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. DOI: https://doi.org/10.1016/j.joi.2017.08.007

Bağış, M., Kurutkan, M. N., & Kryeziu, L. (2023). Entrepreneurship Studies in Türkiye: Where are We? Where Should We Go? Analysis of International Publications. In Entrepreneurship Development in the Balkans: Perspective from Diverse Contexts (pp. 275-302). Emerald Publishing Limited. DOI: https://doi.org/10.1108/978-1-83753-454-820231015

Berman, T., Stuckler, D., Schallmo, D., & Kraus, S. (2023). Drivers and success factors of digital entrepreneurship: A systematic literature review and future research agenda. Journal of Small Business Management, 1-29. DOI: https://doi.org/10.1080/00472778.2023.2238791

Bhawna, Gupta, P., Rai, P., & Chauhan, A. (2023). Blockchain application in consumer services: A review and future research agenda. International Journal of Consumer Studies. DOI: https://doi.org/10.1111/ijcs.12940

Boellaard, R., Delgado-Bolton, R., Oyen, W. J., Giammarile, F., Tatsch, K., Eschner, W., ... & Krause, B. J. (2015). FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. European journal of nuclear medicine and molecular imaging, 42, 328-354. DOI: https://doi.org/10.1007/s00259-014-2961-x

Boellaard, R., O’Doherty, M. J., Weber, W. A., Mottaghy, F. M., Lonsdale, M. N., Stroobants, S. G., ... & Krause, B. J. (2010). FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. European journal of nuclear medicine and molecular imaging, 37, 181-200. DOI: https://doi.org/10.1007/s00259-010-1458-5

Calais, J., Czernin, J., Cao, M., Kishan, A. U., Hegde, J. V., Shaverdian, N., ... & Nickols, N. G. (2018). 68Ga-PSMA-11 PET/CT mapping of prostate cancer biochemical recurrence after radical prostatectomy in 270 patients with a PSA level of less than 1.0 ng/mL: impact on salvage radiotherapy planning. Journal of Nuclear Medicine, 59(2), 230-237. DOI: https://doi.org/10.2967/jnumed.117.201749

Cebeci, S., Aydos, U., Yeniceri, A., Pula, D., Duzlu, M., Atay, L. O., & Yilmaz, M. (2023). Diagnostic performance of FDG PET/MRI for cervical lymph node metastasis in patients with clinically N0 head and neck cancer. European Review for Medical & Pharmacological Sciences, 27(10).

Chao, S. T., Ahluwalia, M. S., Barnett, G. H., Stevens, G. H., Murphy, E. S., Stockham, A. L., ... & Suh, J. H. (2013). Challenges with the diagnosis and treatment of cerebral radiation necrosis. International Journal of Radiation Oncology* Biology* Physics, 87(3), 449-457. DOI: https://doi.org/10.1016/j.ijrobp.2013.05.015

Choi, S. H., Moon, W. K., Hong, J. H., Son, K. R., Cho, N., Kwon, B. J., ... & Park, S. H. (2007). Lymph node metastasis: ultrasmall superparamagnetic iron oxide–enhanced MR imaging versus PET/CT in a rabbit model. Radiology, 242(1), 137-143. DOI: https://doi.org/10.1148/radiol.2421060093

Cook, G. J., Houston, S., Rubens, R., Maisey, M. N., & Fogelman, I. (1998). Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. Journal of clinical oncology, 16(10), 3375-3379. DOI: https://doi.org/10.1200/JCO.1998.16.10.3375

Cristo Santos, J., Henriques Abreu, M., Seoane Santos, M., Duarte, H., Alpoim, T., Próspero, I., ... & Henriques Abreu, P. (2023). Bone Metastases Detection in Patients with Breast Cancer: Does Bone Scintigraphy Add Information to PET/CT?. The Oncologist, oyad087. DOI: https://doi.org/10.1093/oncolo/oyad087

Damle, N. A., Bal, C., Bandopadhyaya, G. P., Kumar, L., Kumar, P., Malhotra, A., & Lata, S. (2013). The role of 18 F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99m Tc-MDP bone scan. Japanese journal of radiology, 31, 262-269. DOI: https://doi.org/10.1007/s11604-013-0179-7

Dash, M. K., Singh, C., Panda, G., & Sharma, D. (2023). ICT for sustainability and socio-economic development in fishery: a bibliometric analysis and future research agenda. Environment, Development and Sustainability, 25(3), 2201-2233. DOI: https://doi.org/10.1007/s10668-022-02131-x

Dellepiane, G., Casolaro, P., Mateu, I., Scampoli, P., & Braccini, S. (2023, September). New developments for theranostic radioisotope production with solid targets at the Bern medical cyclotron. In Journal of Physics: Conference Series (Vol. 2586, No. 1, p. 012116). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/2586/1/012116

Eiber, M., Maurer, T., Souvatzoglou, M., Beer, A. J., Ruffani, A., Haller, B., ... & Schwaiger, M. (2015). Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. Journal of nuclear medicine, 56(5), 668-674. DOI: https://doi.org/10.2967/jnumed.115.154153

Eisenhauer, E. A., Therasse, P., Bogaerts, J., Schwartz, L. H., Sargent, D., Ford, R., ... & Verweij, J. (2009). New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). European journal of cancer, 45(2), 228-247. DOI: https://doi.org/10.1016/j.ejca.2008.10.026

Evangelista, L., Panunzio, A., Polverosi, R., Ferretti, A., Chondrogiannis, S., Pomerri, F., ... & Muzzio, P. C. (2012). Early bone marrow metastasis detection: the additional value of FDG-PET/CT vs. CT imaging. Biomedicine & Pharmacotherapy, 66(6), 448-453. DOI: https://doi.org/10.1016/j.biopha.2012.06.004

Even-Sapir, E., Metser, U., Mishani, E., Lievshitz, G., Lerman, H., & Leibovitch, I. (2006). The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single-and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. Journal of Nuclear Medicine, 47(2), 287-297. DOI: https://doi.org/10.1016/S0022-5347(18)33757-1

Fendler, W. P., Eiber, M., Beheshti, M., Bomanji, J., Ceci, F., Cho, S., ... & Herrmann, K. (2017). 68 Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. European journal of nuclear medicine and molecular imaging, 44, 1014-1024. DOI: https://doi.org/10.1007/s00259-017-3670-z

Gabriel, M., Decristoforo, C., Kendler, D., Dobrozemsky, G., Heute, D., Uprimny, C., ... & Virgolini, I. J. (2007). 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. Journal of nuclear medicine, 48(4), 508-518. DOI: https://doi.org/10.2967/jnumed.106.035667

Gallowitsch, H. J., Kresnik, E., Gasser, J., Kumnig, G., Igerc, I., Mikosch, P., & Lind, P. (2003). F-18 fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Investigative radiology, 38(5), 250-256. DOI: https://doi.org/10.1097/01.RLI.0000063983.86229.f2

Göksel, S., & Özçelik, N. (2021). Distant metastasis patterns of lung cancer on positron emission tomography/computed tomography association with age and histological subtype.

Gülhan, P. Y., & Kurutkan, M. N. (2021). Bibliometric analysis of the last 40 years of Chest Journal. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(4), 1507-1518. DOI: https://doi.org/10.29130/dubited.891524

Gwak, H. S., Youn, S. M., Chang, U., Lee, D. H., Cheon, G. J., Rhee, C. H., ... & Kim, H. J. (2006). Usefulness of 18F-fluorodeoxyglucose PET for radiosurgery planning and response monitoring in patients with recurrent spinal metastasis. min-Minimally Invasive Neurosurgery, 49(03), 127-134 DOI: https://doi.org/10.1055/s-2006-932181

Hagens, M. J., Luining, W. I., Jager, A., Donswijk, M. L., Cheung, Z., Wondergem, M., ... & van der Poel, H. G. (2023). The diagnostic value of PSMA PET/CT in men with newly diagnosed unfavorable intermediate-risk prostate cancer. Journal of Nuclear Medicine, 64(8), 1238-1243. DOI: https://doi.org/10.2967/jnumed.122.265205

Hamaoka, T., Madewell, J. E., Podoloff, D. A., Hortobagyi, G. N., & Ueno, N. T. (2004). Bone imaging in metastatic breast cancer. Journal of Clinical Oncology, 22(14), 2942-2953. DOI: https://doi.org/10.1200/JCO.2004.08.181

Hoegerle, S., Altehoefer, C., Ghanem, N., Koehler, G., Waller, C. F., Scheruebl, H., ... & Nitzsche, E. (2001). Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology, 220(2), 373-380. DOI: https://doi.org/10.1148/radiology.220.2.r01au25373

Hofman, M. S., Lawrentschuk, N., Francis, R. J., Tang, C., Vela, I., Thomas, P., ... & Murphy, D. G. (2020). Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. The Lancet, 395(10231), 1208-1216. DOI: https://doi.org/10.1016/S0140-6736(20)30314-7

Huang, D., Wu, J., Zhong, H., Li, Y., Han, Y., He, Y., ... & Pang, H. (2023). [68Ga] Ga-FAPI PET for the evaluation of digestive system tumors: systematic review and meta-analysis. European Journal of Nuclear Medicine and Molecular Imaging, 50(3), 908-920. DOI: https://doi.org/10.1007/s00259-022-06021-2

Jambor, I., Kuisma, A., Ramadan, S., Huovinen, R., Sandell, M., Kajander, S., ... & Seppänen, M. (2016). Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5 T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta oncològica, 55(1), 59-67. DOI: https://doi.org/10.3109/0284186X.2015.1027411

Kaushal, N., Kaurav, R. P. S., Sivathanu, B., & Kaushik, N. (2023). Artificial intelligence and HRM: identifying future research Agenda using systematic literature review and bibliometric analysis. Management Review Quarterly, 73(2), 455-493. DOI: https://doi.org/10.1007/s11301-021-00249-2

Kurutkan, M. N., & Terzi, M. (2022). Sağlık hizmetlerinde dış kaynak kullanımının Bibliyometrik analizi. Sağlık Bilimlerinde Değer, 12(3), 417-431. DOI: https://doi.org/10.33631/sabd.1072053

Lee, Y. Y. P., Wong, K. T., King, A. D., & Ahuja, A. T. (2008). Imaging of salivary gland tumours. European journal of radiology, 66(3), 419-436. DOI: https://doi.org/10.1016/j.ejrad.2008.01.027

Luthra, S., Agrawal, S., Kumar, A., Sharma, M., Joshi, S., & Kumar, J. (2023). Psychological well-being of young adults during COVID-19 pandemic: Lesson learned and future research agenda. Heliyon. DOI: https://doi.org/10.1016/j.heliyon.2023.e15841

Maurer, T., Gschwend, J. E., Rauscher, I., Souvatzoglou, M., Haller, B., Weirich, G., ... & Eiber, M. (2016). Diagnostic efficacy of 68gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. The Journal of urology, 195(5), 1436-1443. DOI: https://doi.org/10.1016/j.juro.2015.12.025

Mazzola, R., Francolini, G., Triggiani, L., Napoli, G., Cuccia, F., Nicosia, L., ... & Alongi, F. (2021). Metastasis-directed therapy (SBRT) guided by PET-CT 18F-CHOLINE versus PET-CT 68Ga-PSMA in castration-sensitive oligorecurrent prostate cancer: a comparative analysis of effectiveness. Clinical Genitourinary Cancer, 19(3), 230-236. DOI: https://doi.org/10.1016/j.clgc.2020.08.002

Miladinova, D. (2023). Molecular imaging of HER2 receptor: Targeting HER2 for imaging and therapy in nuclear medicine. Frontiers in molecular biosciences, 10, 1144817. DOI: https://doi.org/10.3389/fmolb.2023.1144817

Ohno, Y., Koyama, H., Onishi, Y., Takenaka, D., Nogami, M., Yoshikawa, T., ... & Sugimura, K. (2008). Non–small cell lung cancer: whole-body MR examination for M-stage assessment—utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology, 248(2), 643-654. DOI: https://doi.org/10.1148/radiol.2482072039

Perera, M., Papa, N., Christidis, D., Wetherell, D., Hofman, M. S., Murphy, D. G., ... & Lawrentschuk, N. (2016). Sensitivity, specificity, and predictors of positive 68Ga–prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. European urology, 70(6), 926-937. DOI: https://doi.org/10.1016/j.eururo.2016.06.021

Rahbar, K., Ahmadzadehfar, H., Kratochwil, C., Haberkorn, U., Schäfers, M., Essler, M., ... & Krause, B. J. (2017). German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. Journal of Nuclear Medicine, 58(1), 85-90. DOI: https://doi.org/10.2967/jnumed.116.183194

Reske, S. N., & Kotzerke, J. (2001). FDG-PET for clinical use: results of the 3rd German Interdisciplinary Consensus Conference," Onko-PET III", 21 July and 19 September 2000. European journal of nuclear medicine, 28, 1707-1723. DOI: https://doi.org/10.1007/s002590100626

Schott, B., Weisman, A. J., Perk, T. G., Roth, A. R., Liu, G., & Jeraj, R. (2023). Comparison of automated full-body bone metastases delineation methods and their corresponding prognostic power. Physics in Medicine & Biology, 68(3), 035011. DOI: https://doi.org/10.1088/1361-6560/acaf22

Selzner, M., Hany, T. F., Wildbrett, P., McCormack, L., Kadry, Z., & Clavien, P. A. (2004). Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver?. Annals of surgery, 240(6), 1027. DOI: https://doi.org/10.1097/01.sla.0000146145.69835.c5

Shreve, P. D., Grossman, H. B., Gross, M. D., & Wahl, R. L. (1996). Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18] fluoro-D-glucose. Radiology, 199(3), 751-756. DOI: https://doi.org/10.1148/radiology.199.3.8638000

Sundin, A., Arnold, R., Baudin, E., Cwikla, J. B., Eriksson, B., Fanti, S., ... & all other Antibes Consensus Conference participants. (2017). ENETS consensus guidelines for the standards of care in neuroendocrine tumors: radiological, nuclear medicine and hybrid imaging. Neuroendocrinology, 105(3), 212-244. DOI: https://doi.org/10.1159/000471879

Van den Wyngaert, T., Strobel, K., Kampen, W. U., Kuwert, T., van der Bruggen, W., Mohan, H. K., ... & EANM Bone & Joint Committee and the Oncology Committee. (2016). The EANM practice guidelines for bone scintigraphy. European journal of nuclear medicine and molecular imaging, 43, 1723-1738. DOI: https://doi.org/10.1007/s00259-016-3415-4

Vargas, C. S., Struelens, L., D’Huyvetter, M., Caveliers, V., & Covens, P. (2023). A Realistic Multiregion Mouse Kidney Dosimetry Model to Support the Preclinical Evaluation of Potential Nephrotoxicity of Radiopharmaceutical Therapy. Journal of Nuclear Medicine, 64(3), 493-499. DOI: https://doi.org/10.2967/jnumed.122.264453

Zadeh, M. Z. (2023). Clinical Application of 18F-FDG-PET Quantification in Hematological Malignancies: Emphasizing Multiple Myeloma, Lymphoma and Chronic Lymphocytic Leukemia. Clinical Lymphoma Myeloma and Leukemia.