Antibacterial Activity of Laurus nobilis: A review of literature

Main Article Content

Belgin Sırıken
Ceren Yavuz
Ayhan Güler


The presence of phenolic compounds in spices and herbs, along with the essential oils, has been gaining attention due to their various functions like antioxidant capacity, antimicrobial properties, and flavoring properties. The Bay leaf belongs to Lauraceae family and is endemic in the Mediterranean region. Lauraceaeis an aromatic plant frequently used as a spice in Mediterranean cookery and as a traditional medicine for the treatment of several infectious disease. L. nobilis also belongs to Lauraceae.L. nobilis is aromatic tree, and is 2 m to 10 m high. L.nobilis contains about 1.3% essential oils and polar flavonoids mono, sesquiterpenes, alkoloids, glycosylated flavor-noids, megastigmane and phenolic components. It is known to have various pharmacological effects, including antimicrobial, cytotoxic and immune modulating. Its’ essential oil containg eucalyptol, α-terpinyl acetate, linalool, methyl eugenol, sabinene and carvacrol. The property of every essential oil varies according to the harvest country, altitude, period of sunshine, conditions of harvest. These essential oil contents of L. nobilis are strong antibacterial activity against Gram negative and Gram positive foodorne pathogens (SalmonellaStaphylococcus aureus, Esherichia coli, Listeria monocytogenes like that), spoilage bacteria (Pseudomonas aeroginosa) as well as antifungal effects. The synergy between terpenes (linalool), lactones, oxides (1,8 cineole) and monoterpenes (camphene, alpa-pinene) gives to the  essential oil of Laurel a good antibacterial activity. Its essential oils’ various or single chemical compositions at different concentrations have different inhibition mechanisms that can affect a variety of pathogens by changing membrane permeability, denaturing proteins and inhibiting enzymes. The oils are not affecting on existing beneficial intestinal bacteria. 


Download data is not yet available.

Article Details

How to Cite
Sırıken, B. ., Yavuz, . C. ., & Güler, A. . (2018). Antibacterial Activity of Laurus nobilis: A review of literature. Medical Science and Discovery, 5(11), 374–379. Retrieved from
Review Article


1. Dorman HJ1, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils.J Appl Microbiol.2000. 88(2):308-16.
2. Dall’Acqua S, Viola G, Giorgetti M, Loi MC, Innocenti G. Two new sesquiterpene lactones from the leaves of Laurus nobilis. Chem. Pharm. Bull. 2006. 54:1187-1189.
3. Yılmaz EY, Timur M, Aslim B. Antimicrobial, Antioxidant Activity of the Essential Oil of Bay Laurel from Hatay, Turkey. TEOP 16 (1) 2013 pp 108 – 116.
4. Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol.,2008. 46, 446–475.
5. Ozogul I, Polat A, Ozogul Y, Boga EK, Ayas D. Effects of laurel and myrtle extracts on the sensory, chemical and microbiological properties of vacuum-packed and refrigerated European eel (Anguilla anguilla) fillets. International Journal of food Science and Technology,2013. Doi :10.1111/ijfs.12374
6. Rafiq R, Hayek SA, Anyanwu U, Hardy BI, Giddings VL,Ibrahim SA, Tahergorabi R, Won Kang H. Antibacterial and Antioxidant Activities of Essential Oils from Artemisia herba-alba Asso., Pelargonium capitatum × radens and Laurus nobilis L.Foods, 2016. 5(2):28.
7. Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel),2013. 6(12): 1451-74.
8. Benoit SG, , Saint Gir FT, The Choice of Essential Oils, Health, Beauty and Well-Being by the Aromatherapy, Jouvence Ed., France, 2010.
9. Santos AF, Brotto DF, Favarin LRV, Cabeza NA, Andrade GR, Batistote M, et al. Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts. Rev Bras Farmacogn 2014. 24(3): 309-15.
10. Park HJ, Jung WT, Basnet P, Kadota S, Namba T Syringin 4-Obglucoside, a new phenylpropanoid glycoside, and costunolide, a nitric oxide synthase inhibitor, from the stem bark of Magnolia sieboldii. J. Nat. Prod.1996. 59:1128-1130.
11. Sikkema J, De Bont JAM, Poolman B Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem.1994. 269:8022- 8028.
12. Loäpez P, Saänchez C, Batlle R, Neriän C. Solid- and VaporPhase Antimicrobial Activities of Six Essential Oils:  Susceptibility of Selected Foodborne Bacterial and Fungal Strains. J. Agric. Food Chem. 2005. 53(17):6939-6946
13. Ouibrahim A, Tlili-Ait-Kaki Y, Bennadja S, Amrouni S, Djahoudi AG, Djebar MR. Evaluation of antibacterial activity of Laurus nobilis L., Rosmarinus officinalis L. and Ocimum basilicum L. from Northeast of Algeria. African journal of microbiology research 2013. ,7(42): 4968-4973.
14. Bennadja S, Thili Ait Kaki Y, Djahoudi A, Hadef Y,Chefrour A. Antibiotic Activity of the Essential Oil of Laurel (Laurus nobilis L.) on Eight Bacterial Strains. Journal of Life Sciences, 2013. 7 (8): 814-819.
15. Erkan, N., Tosun, S.Y., Ulusoy, S. & Uretener, G. The use € of thyme and laurel essential oil treatments to extend the shelf life of bluefish (Pomatomus saltatrix) during storage in ice. Journal fur€ Verbraucherschutz und Lebensmittelsicherheit, 2011. 6, 39–48.
16. Sambhy V, MacBride, M. M, Peterson, B. R, Sen A. 2006. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc, 2: 9798-9808.
17. Williams RL, Doherty PJ, Vince DG, Grashoff GJ, Williams D.F. The biocompatibility of silver. Crit. Rev .Biocompat, 1989. 5:221–243.
18. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 2007. 90, 213902- 1–213902-3
19. Agarwal H, Menon S, Kumar S, Rajeshkumar S. .Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biological Interactions, 2018.286: 60-70.
20. Cowan M.M. Plant products as antimicrobial agents. Clin Microbiol Rev., 1999 12: 564-582.
21. Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R; Sastry, M. Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir. 2003. 19, 3550–3553.
22. Vijayakumar S, Vaseeharan B, Malaikozhundan B, Shobiya M. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomedicine & Pharmacotherapy. 2016. 84 1213–1222
23. Puzyn T.; Leszczynski J.; Cronin M.T.D. Recent Advances in QSAR Studies: Methods and Applications, Springer. 2010.
24. Mukherjee, P.; Senapati, S.; Mandal, D.; Ahmad, A.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem., 2002. 3, 461- 463.
25. Hahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry.2007;42:919–923.

Most read articles by the same author(s)